15 篇最新 AI 论文来袭!NLP、CV...人人有份 | 本周值得读

MortonSebastiane 发布于5月前 阅读177次
0 条评论

15 篇最新 AI 论文来袭!NLP、CV...人人有份 | 本周值得读

在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考。 在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果。点击即刻加入社区,查看更多最新论文推荐。

Accelerating Neural Transformer via an Average Attention Network

@bzhang 推荐

#Neural Machine Translation

本文主要研究机器翻译领域最先进的 Transformer 系统 (Attention is all you need)。针对该系统解码效率底下的问题,本文在模型设计层面提出平均注意网络,在不损失翻译质量的情况下,本文所提模型有效提升解码速率 4~7 倍。

本文在 WMT 六个语言对 12 个翻译方向上进行了实验论证,结果一致地表明本文所提模型可以有效地提升解码速率,并生成高质量译文。

论文链接: https://www. paperweekly.site/papers /1929

代码链接: https:// github.com/bzhangXMU/tr ansformer-aan

Cross Domain Regularization for Neural Ranking Models Using Adversarial Learning

@Ttssxuan 推荐

#Adversarial Learning

本文来自 SIGIR ’18。深度表征学习网络可以自动地学习数据集中数据的表示,但是这也存在局限性,其被局限到被采样的数据中,而对未见过的数据域泛化能力有限。 本文借助对抗网络对表征学习网络进行正则化 ,其分类器向表征网络提供负反馈,使其不会陷入特定数据域的表征学习,从而提升网络对的泛化能力。

论文链接: https://www. paperweekly.site/papers /1923

Hierarchical Neural Story Generation

@llamazing 推荐

#Text Generation

本文来自 Facebook AI Research, 论文使用层次话结构做故事生成,解决长依赖性问题 。少信息->多信息,decoder self-attention + model fusion,decoder 时 word 从 word prob top10 中随机选取,可减少生成重复文本。

论文链接: https://www. paperweekly.site/papers /1932

 

DOTA: A Large-scale Dataset for Object Detection in Aerial Images

@paperweekly 推荐

#Object Detection

本文提出了一个数据集 ,包含 2806 张遥感图像(大小约 4000*4000),188,282 个 instances,分为 15 个类别。

论文链接: http://www. paperweekly.site/papers /1907

代码链接: https:// github.com/jessemelpoli o/Faster_RCNN_for_DOTA

数据集链接: https:// captain-whu.github.io/D OTA/dataset.html

 

Spiking Deep Residual Network

@chlr1995 推荐

#Spiking Neural Network

脉冲神经网络(SNN)在生物理论中备受关注。理论上脉冲神经网络应该与人工神经网络的性能是相同的,但是训练深层的 SNN 是非常困难的。 本文提出了一种脉冲版本的 ResNet ,并且在 MNIST、CIFAR 等数据集上实验得到了 state of the art的结果。

论文链接: https://www. paperweekly.site/papers /1916

 

Deep Active Learning for Named Entity Recognition

@cmdjeu 推荐

#Named Entity Recognition

本文是亚马逊和 UT Austin 发表于 ICLR 2018 的工作, 论文在命名实体识别的方法上引入主动学习,在少量数据集即可达到较优结果 ,感觉也可以扩展到其他自然语言方向。

论文链接: https://www. paperweekly.site/papers /1919

 

An Universal Image Attractiveness Ranking Framework

@Ttssxuan 推荐

#Image Ranking

本文来自微软, 本文结合 deep convolutional neural network 和 rank net,设计对成对的图片的 Attractiveness 排序模型 。 模型首先使用深度卷积得到网络图片的 attractiveness score 的均值和方差,然后使用设计好的标准,对两个图片之间的关系进行预测。

论文把模型排序结果和搜索引擎排序结果比较,质量得到较明显提升。

论文链接: http://www. paperweekly.site/papers /1908

 

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec

@xavierzw 推荐

#Network Embedding

本文来自清华和微软。 论文创造性地将 DeepWalk,LINE,Node2Vec 等 network embedding 的方法,通过 Matrix Factorization 框架来统一表示

进一步地基于 Matrix Factorization 的思路,作者提出 NetMF 方法,实验证明优于 DeepWalk,LINE 的算法。此外作者也给出了相关 Upper Bound 的严格数学证明。

论文链接: https://www. paperweekly.site/papers /1924

代码链接: https:// github.com/xptree/NetMF

 

Global Encoding for Abstractive Summarization

@llamazing 推荐

#Abstractive Summarization

本文是北京大学发表于 ACL 2018 的工作, 论文提出用 Global Encoding 解决句内重复和输入输出语义无关问题 ,Convolutional Gated Unit + Self Attention。

论文链接: https://www. paperweekly.site/papers /1930

代码链接: lancopku/Global-Encoding

 

Look Closer to See Better: Recurrent Attention Convolutional Neural Network for Fine-grained Image Recognition

@RTM 推荐

#Image Recognition

本文是 CVPR 2017 的一篇 Oral 文章,主要工作集中在细粒度图片识别。 文中提出了一种级联的网络结构,通过 anattention proposal sub-network 实现粗粒度图片到细粒度图片的获取和识别 ,文中充分利用了卷积神经网络的注意力机制,在原始图片的基础上裁剪、放大识别图片中目标。

论文链接: https://www. paperweekly.site/papers /1904

 

An Attention Mechanism for Answer Selection Using a Combined Global and Local View

@IndexFziQ 推荐

#Answer Selection

本文来自 Digitalgenius, 提出用 attention 根据不同的输入粒度计算相似度,将答案的特定部分中的局部信息与整个问题的全局表示相结合 。Answer selection 的关键就是文本相似度的计算,文章有可以学习的地方。

最后在 InsuranceQA 上评估系统,实验目的是看注意力机制关注的哪些部分文本,并探究其在不同参数设置下的表现,结果比 IBM(Improved Representation Learning for Question Answer Matching)提出的 Attention LSTM 稍微提高了一些。

论文链接: https://www. paperweekly.site/papers /1918

 

Deep & Cross Network for Ad Click Predictions

@c0de 推荐

#Ad Click Predictions

本文来自斯坦福大学和 Google, 论文利用深度学习自动高效得学习高阶交叉特征 ,免去特征工程。

论文链接: https://www. paperweekly.site/papers /1898

 

Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks

@liria 推荐

#Convolutional Neural Network

本文来自斯坦福吴恩达组, 该论文主要做的事情建立了从单导联的心电信号到 14 种心脏疾病的模型 ,模型是一个 34 层的 CNN 网络。文章定义了 12 种心脏异常状态和窦性心率及噪声,共 14 种。模型主要是 34 层的残差 CNN 将 ECG 序列映射到 label 序列。

本文声称自己的模型超过了心电科的医生 ,不同于传统的提取各种统计指标再训练模型,是一种直接从 sequnce 训练的模型,确实能够减少很多工作量。

论文链接: https://www. paperweekly.site/papers /1921

 

Efficient Natural Language Response Suggestion for Smart Reply

@mev 推荐

#Natural Language Understanding

本文介绍了 Gmail Smart Reply 的一个检索式实现 ,这个结果应该是实际产品化了的,有一定的参考价值。文章中使用了大量的方式来降低模型的 latency,并且使最终结果保持在较高精度。

比较有意思的是文中有一个实验,使用句子的 ngram embedding sum 来表示句子,然后通过一个 RNN 重新生成原句,在几十万词的数据集下得到了 ppl 为 1.2 的结果,证明了仅仅使用 ngram 就可以捕捉到足够的句子序列信息了。

论文链接: https://www. paperweekly.site/papers /1935

 

DLTSR: A Deep Learning Framework for Recommendation of Long-tail Web Services

@somtian 推荐

#Recommender System

作者使用深层自编码器解决推荐中的一个新颖问题:长尾推荐问题 。探索了深度学习在推荐系统中越来越多的领域。

论文链接: https://www. paperweekly.site/papers /1936

代码链接: https:// github.com/baib/DLTSR

#推 荐 有 礼#

本期所有入选论文的推荐人均将获得 PaperWeekly纪念周边一份:

  • 机器学习主题行李牌/卡套 15 篇最新 AI 论文来袭!NLP、CV...人人有份 | 本周值得读 1
  • 深度学习主题防水贴纸 1

想要赢取以上周边好礼?

点击即刻加入社区参与推荐吧!

 

关于PaperWeekly

PaperWeekly 是一个推荐、解读、讨论、报道人工智能前沿论文成果的学术平台。如果你研究或从事 AI 领域,欢迎在公众号后台点击 「交流群」 ,小助手将把你带入 PaperWeekly 的交流群里。

微信公众号:PaperWeekly

新浪微博:@PaperWeekly

 

查看原文: 15 篇最新 AI 论文来袭!NLP、CV...人人有份 | 本周值得读

  • organicsnake
  • smallmeercat
  • purplegorilla
  • smallostrich
  • brownmeercat
  • organicladybug
  • tinypanda
需要 登录 后回复方可回复, 如果你还没有账号你可以 注册 一个帐号。