keras的完整中文版本文档头条

ctolib 发布于1年前 阅读212次
0 条评论

Keras 是一个用 Python 编写的高级神经网络 API,它能够以 TensorFlowCNTK, 或者 Theano 作为后端运行。Keras 的开发重点是支持快速的实验。能够以最小的时延把你的想法转换为实验结果,是做好研究的关键。

如果你有如下需求,请选择 Keras:

  • 允许简单而快速的原型设计(用户友好,高度模块化,可扩展性)。
  • 同时支持卷积神经网络和循环神经网络,以及两者的组合。
  • 在CPU和GPU上无缝运行与切换。

查看文档,请访问 Keras.io

Keras 兼容的 Python 版本: Python 2.7-3.6

指导原则

  • User friendliness. Keras 是为人类设计的 API,而不是机器。它把用户体验放在首要和中心位置。Keras 遵循减少认知困难的最佳实践: 它提供一致和简单的 API,它将常见用例所需的用户操作数量降至最低,并且在用户错误时提供清晰和可操作的反馈。

  • Modularity. 模型被理解为由独立的,完全可配置的模块构成的序列或图表。这些模块可以在尽可能少的限制下组装在一起。特别是神经网络层、损失函数、优化器、初始化方法、激活函数、正则化方法,它们都是可以结合起来构建新模型的模块。

  • Easy extensibility. 新的模块是很容易添加的(作为新的类和函数),现有的模块已经提供了充足的例子。为能够轻松地创建可以提高表现力的新模块,使 Keras 更加适合高级研究。

  • Work with Python. Keras 没有特定格式的单独配置文件。模型定义在 Python 代码中,这些代码紧凑,易于调试,并且易于扩展。

快速开始:30秒上手 Keras

Keras 的核心数据结构是 model,一种组织网络层的方式。最简单的模型是 Sequential 模型,它是由多网络层线性堆叠的栈。对于更复杂的结构,你应该使用 Keras 函数式 API,它允许构建任意的神经网络图。

Sequential 模型如下所示:

from keras.models import Sequential

model = Sequential()

可以简单地使用 .add() 来堆叠模型:

from keras.layers import Dense

model.add(Dense(units=64, activation='relu', input_dim=100))
model.add(Dense(units=10, activation='softmax'))

在完成了模型的构建后, 可以使用 .compile() 来配置学习过程:

model.compile(loss='categorical_crossentropy',
              optimizer='sgd',
              metrics=['accuracy'])

如果需要,你还可以进一步地配置优化器。Keras 的一个核心原则是使事情变得相当简单,同时又允许用户在需要的时候能够进行完全的控制(终极的控制是源代码的易扩展性)。

model.compile(loss=keras.losses.categorical_crossentropy,
              optimizer=keras.optimizers.SGD(lr=0.01, momentum=0.9, nesterov=True))

现在,你可以批量地在训练数据上进行迭代了:

# x_train and y_train are Numpy arrays --just like in the Scikit-Learn API.
model.fit(x_train, y_train, epochs=5, batch_size=32)

或者,你可以手动地将批次的数据提供给模型:

model.train_on_batch(x_batch, y_batch)

只需一行代码就能评估模型性能:

loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)

或者对新的数据生成预测:

classes = model.predict(x_test, batch_size=128)

构建一个问答系统,一个图像分类模型,一个神经图灵机,或者其他的任何模型,就是这么的快。深度学习背后的思想很简单,那么它们的实现又何必要那么痛苦呢?

有关 Keras 更深入的教程,请查看:

在代码仓库的 examples 目录中,你会找到更多高级模型:基于记忆网络的问答系统,基于栈式 LSTM 的文本生成等等。

安装

在安装 Keras 之前,请安装以下后端引擎之一:TensorFlow, Theano,或者 CNTK。我们推荐 TensorFlow 后端。

你也可以考虑安装以下可选依赖

  • cuDNN (如果你计划在 GPU 上运行 Keras,建议安装)。
  • HDF5 和 h5py (如果你需要将 Keras 模型保存到磁盘,则需要这些)。
  • graphviz 和 pydot (被可视化工具用来绘制模型图)。

然后你就可以安装 Keras 本身了。有两种方法安装 Keras:

  • 使用 PyPI 安装 Keras (推荐):
sudo pip install keras

如果你使用 virtualenv 虚拟环境, 你可以避免使用 sudo:

pip install keras
  • 或者:使用 Github 源码安装 Keras:

首先,使用 git 来克隆 Keras:

git clone https://github.com/keras-team/keras.git

然后,cd 到 Keras 目录并且运行安装命令:

cd keras
sudo python setup.py install

从 TensorFlow 切换到 CNTK 或 Theano

默认情况下,Keras 将使用 TensorFlow 作为张量操作库。请跟随这些指引来配置其他 Keras 后端。

支持

你可以提出问题并参与开发讨论:

你也可以在 Github issues 中张贴 漏洞报告和新功能请求。注意请先阅读 规范文档 

为什么取名为 Keras?

Keras (κέρας) 在希腊语中意为 号角 。它来自古希腊和拉丁文学中的一个文学形象,首先发现于 《奥德赛》 中, 梦神 (Oneiroi, singular Oneiros) 从这两类人中分离出来:那些用虚幻的景象欺骗人类,通过象牙之门抵达地球之人,以及那些宣告未来即将到来,通过号角之门抵达之之人。 它类似于文字寓意,κέρας (号角) / κραίνω (履行),以及 ἐλέφας (象牙) / ἐλεφαίρομαι (欺骗)。

Keras 最初是作为 ONEIROS 项目(开放式神经电子智能机器人操作系统)研究工作的一部分而开发的。

"Oneiroi 超出了我们的理解 - 谁能确定他们讲述了什么故事?并不是所有人都能找到。那里有两扇门,就是通往短暂的 Oneiroi 的通道;一个是用号角制造的,一个是用象牙制造的。穿过尖锐的象牙的 Oneiroi 是诡计多端的,他们带有一些不会实现的信息; 那些穿过抛光的喇叭出来的人背后具有真理,对于看到他们的人来说是完成的。" Homer, Odyssey 19. 562 ff (Shewring translation).

  • ctolib
  • ctolib
需要 登录 后回复方可回复, 如果你还没有账号你可以 注册 一个帐号。